力矩是量度力对物体产生转动效应的物理量,可分为力对点的矩和力对轴的矩。下面是小编为大家整理的力矩与角动量的关系,仅供参考,欢迎阅读。 力矩与角动量的关系 某质点对参考系的角动量M对时间的变化率等于作用于该质点的合力对这个质点的力矩L,就是角动量定理,M=dL/dt。就是L对时间t的微分就是M,M和L都是有方向的。 力矩 力矩表示力对物体作用时所产生的转动效应的物理量。力和力臂的乘积为力矩。力矩是矢量。力对某一点的力矩的大小为该点
角动量L的大小为L=rpsinφ(φ为r与p的夹角),方向垂直于位矢r和动量p所组成的平面,指向是由r经小于180°的角转到p的右手螺旋前进的方向。下面是小编为大家整理的角动量和转动惯量的关系,仅供参
对一固定点o,一个系统所受的合外力矩为零,则此质点的角动量矢量保持不变,即为一个系统角动量守恒的条件。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。
角动量中转动惯量的求法有些需要微积分基础,这里给出质点:J=mr^2。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点的力矩。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。