上学期间,说到知识点,大家是不是都习惯性的重视?知识点有时候特指教科书上或考试的知识。为了帮助大家掌握重要知识点,以下是小编帮大家整理的高中数学等比数列知识点总结,欢迎阅读与收藏。 高中数学等比数列知识点总结 篇1 1.等比数列的有关概念 (1)定义: 如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q
等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,下面是小编收集整理的等比数列知识点总结,请参考! 等比数列知识点总结 1 1、等比数列的定义: 2、通项公式: a n =a 1q n -1=a 1n q =A B n (a 1q ≠0, A B ≠0),首项:a 1;公比:q a n q =n a m a n =q (q ≠0)(n ≥2, 且n ∈N *),q 称为公比 a n -1推广:a n =
作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教案,教案是教学活动的总的组织纲领和行动方案。那么优秀的教案是什么样的呢?下面是小编为大家收集的等比数列教案(精选7篇),希望能够帮助到大家。
等比数列公式就是在数学上求一定数量的等比数列的和的公式。另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。
q=an/a(n-1),q=[an/a1]^[1/(n-1)]。q叫做等比数列的公比。等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠0。其中{an}中的每一项均不为0。
作为一位无私奉献的人民教师,通常需要用到说课稿来辅助教学,借助说课稿可以提高教学质量,取得良好的教学效果。快来参考说课稿是怎么写的吧!下面是小编为大家收集的等比数列的概念说课稿(精选10篇),仅供参考,大家一起来看看吧。 等比数列的概念说课稿 1 今天我说的课题是《等比数列及其通项公式》。主要研究两类问题:一、等比数列内容的介绍及通项公式的推导。二、激发学生的探索精神,培养独立思考和善于总结的优良习惯,达到新课程标准中提出的“关注学
在教学工作者开展教学活动前,时常要开展说课稿准备工作,借助说课稿可以更好地组织教学活动。那要怎么写好说课稿呢?以下是小编帮大家整理的中职数学等比数列说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。中职
作为一名默默奉献的教育工作者,通常会被要求编写说课稿,借助说课稿可以有效提升自己的教学能力。怎么样才能写出优秀的说课稿呢?以下是小编为大家整理的等比数列的前n项和说课稿,仅供参考,希望能够帮助到大家。
一、大纲与教材 等比数列前n项和一节是人教社高中数学必修教材试验修订本第一册第三章第五节的内容,教学对象为高一学生,教学时数2课时。 第三章《数列》是高中数学的重要内容之一,之所以在新大纲里保留下来,这是由其在整个高中数学领域里的重要地位和作
作为一位无私奉献的人民教师,常常要写一份优秀的说课稿,借助说课稿可以更好地提高教师理论素养和驾驭教材的能力。如何把说课稿做到重点突出呢?下面是小编帮大家整理的《等比数列》说课稿范文,仅供参考,希望能够帮助到大家。 《等比数列》说课稿 1 一、教材分析 1.从在教材中的地位与作用来看 《等比数列的前n项和》是数列这一章中的一个重要内容,它不仅在现实生活中有着广泛的实际应用,如储蓄、分期付款的有关计算等等,而且公式推导过程中所渗透的
一、地位作用 数列是高中数学重要的内容之一,等比数列是在学习了等差数列后新的一种特殊数列,在生活中如储蓄、分期付款等应用较为广泛,在整个高中数学内容中数列与已学过的函数及后面的数列极限有密切联系,它也是培养学生数学能力的良好题材,它可以培养
作为一名优秀的教育工作者,常常要写一份优秀的说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。我们应该怎么写说课稿呢?下面是小编整理的《等比数列》高中数学说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。 《等比数列》高中数学说课稿 篇1 今天我说的课题是《等比数列及其通项公式》。主要研究两类问题:一、等比数列内容的介绍及通项公式的推导。二、激发学生的探索精神,培养独立思考和善于总结的优良习惯,达到新课程标准中提出的“关注学生体验、感
高中数学必修等比数列练习题 一、选择题: 1、 是 , , 成等比数列的( ) A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要条件 2、已知 , , , 是公比为2的等比数列,则 等于( ) A.1 B. C. D. 3、已知 是等比数列,且 , ,那么 的值是
一、选择题 1。(2007陕西理)各项均为正数的等比数列的前项和为,若,,则( ) A。16 B。25 C。30 D。80 考查目的:考查等比数列的前项和公式及运算求解能力。 答案:C。 解析:由,可知,的公比,∴①,②,②式除以①式,得,解得(舍去),代入①,得。